
Journal of Applied Mechanics and Technical Physics, Vol. 36, No. 4, 1995 

S T U D Y  OF T H E  B A U S C H I N G E R  E F F E C T  

U N D E R  D Y N A M I C  L O A D I N G  

S. A. Novikov,  V. A. Pushkov, V. A. Sinitsyn, and P. A. Tsoi* UDC 539.389.2 

To determine the load-carrying ability of members of structures under low-cycle loading, it is necessary 
to know the measure of the Bauschinger effect (BE). This effect, as a consequence of deformational anisotropy 
of materials, has been taken into account in some modern models of their mechanical behavior, in particular, 
in the model [1] based on the theory of small elastic-plastic deformations by Ilyushin and also in the 
thermoviscoplasticity model [2]. In the models the BE measure is among the basic scalar functions governing 
the shape and position of the center of an instant yield surface. 

Typically, the quantity 6 defined as 

{ O'~y/O'.{_y, Xo" "-~ --1 "+ +1, 

= O'~y/O'__y, X~ = +1 ~ --1 

is often used as the BE measure for tension-compression (X~ = - 1  --, +1) or compression-tension 
(X~ = +1 -~ - 1 )  processes. Here ~r+y, O'_y are the "instant" yield limits under initial loading, which correspond 
to the residual strain et (Fig. 1); a '  a '  _y, +y are the "instant" yield limAts under succeeding alternate loading 
(they are determined for a given residual deformation tolerance); X~ is the Laudet parameter characterizing 
the type of stressed state. 

It has been established that the BE for alloys and doped metals depends essentially on the previous 
elastic strain in a foregoing loading phase [1, 3]. Here 6 decreases with increasing et and remains virtually 
constant at et - 2-4%. Generally, the BE measure is a function of deformation rate g, temperature T, as well 
as of r and X,r: 6 = 6(~,T, et, X~). 

With no available data on BE, the calculations are based on the assumption that  the classical Mazing 
principle is valid. For instance, a+y + [aLy[ = 2a~ ((roy is the yield limit at a starting tension) for tension- 
compression processes. However, the equality does not hold for the majority of materials and, therefore, 
the generalized Mazing principle is used: a+y --[- Int._y[ ---- k~a~y, where ka is determined as the BE measure 

' a ~ = (1 +6)~r+y/a~ It has been shown [1, 4, 5] that  the Mazing principle, when compared = +y 

with other known methods of construction of repeated strain diagrams by the initial one (for example, by the 
methods of [3, 6]) reflects the physical nature of repeated strain processes most fully. 

Though the studies in the field were started as early as in the late XIXth century [7], the BE is still 
studied insufficiently and under static loading only. Meantime, alternate low-cycle loadings are predominantly 
of a dynamic nature. The difficulties in realization of the alternate dynamic loading of a specimen seem to be 
the main reason for the present state of the problem. 

Apparently, the first successful a t tempt  to experimentally determine the BE under dynamic loading 
was made in [8]. 

The technique for studying the dynamic BE in structural materials based on the method described 
in [8] and the first results obtained with steel St. 3 are discussed in this paper. 
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Fig. 1 

1. T h e o r e t i c a l  Approach .  In [8], it is proposed that a three-step rod, in which the processes of 
propagation, reflection, and transformation of stress waves occur upon an impact of a pin on a step, be used 
in order to achieve dynamic low-cycle alternate loading. 

According to the theory of propagation of stress elastic waves, a stress wave agi(x - clt) incident upon 
an interface between media with different acoustic stiffnesses Aiplci (i = 1,2) is the sum of the passing 
agy(x - c2t) and reflected agR(x - clt) wave. 

Hence, the following equations are true: 

agy/agI = 2Alp2c2/(AlplCl + A2p2c2), (1.1) 

agR/agI = (A2P2C2 -- AlPlCl) /(AlPlCl + A2P2C2), 

where Ai, pi, ci (i = 1, 2) are the cross-section area, density, and sound velocity, respectively, of the media 1 

and 2 (ci = ~ / p i ,  Ei is the modulus of elasticity of the media). 
Figure 2 shows the propagation and reflection of stress waves in the Lagrangian coordinates (x, t) under 

the impact of a tubular pin on a small step B - B  at velocity V0. Here A0, A1, A2, A3 are the cross-section areas 
of the pin and sections 1-3 of the rod, respectively. It is assumed that the tubular pin and sections 2 and 3 of 
the rod have equal lengths, and the impact of the pin on the section B - B  of the rod gives rise to rectangular 
stress pulses in sections 1 and 2. Stress pulses emerging in the cross-section D - D  of section 1 in time are shown 
in Fig. 2 also. The passing and reflected stress waves generated at the section boundaries obey Eq. (1.1). 

Let ago, agl, 0"2 be stress waves emerging in the pin and sections 1 and 2 of the rod, respectively, upon 
the impact. We will show that in section 1 the primary stress wave agl is followed by alternate stress waves 
ag5 and ag9, which can be expressed in terms of agl. 

From the continuity conditions for the force and mass velocity at the B - B  interface we obtain the 
expressions [8] 

Aoago + Alagl = A2ag2, t~ -- agO/pc = --agl/pc = ag2/pc. (1.2) 

Here p and c are the density and sound velocity, respectively, in the pin and the rod (it is assumed that both 
are made of the same material). 

Likewise, for the C - C  interface of sections 2 and 3, the following equations hold: 

A2(ag2 + 0"4) -- A3ag3, (0"2 - -  ag4)/pc = ag3/pc, (1.3) 

where ag3 and a4 are the passing and reflected stress waves emerging after incidence of the stress wave ag2 upon 
the C - C  interface. 

Amplitudes of ago, ag2, ag3, and ag4 can be found from Eqs. (1.2) and (1.3) in terms of V0, Ao, A1, A2, 
As, pc, and agx. Then.agl = pcVoAo/(Ao + A1 + A2), and 0"2,0"3,0" 4 may be expressed in terms of agl, A1, A2, 
and A3. 

With the help of (1.1)-(1.3) and similar equations describing the passage of the stress waves ag4 and 
ag7 through the B - B  interface (Fig. 1), after some transformations we shall get the equations for as and ag9: 

O"5 = ~agl ,  0"9 = /~agl. (1.4) 
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Fig. 2 

Here 

A = 2(/3 - 1 ) / ( a  -'t- 1 ) ( f l  --I- 1);  

# = 2 [ 4 /~ (~  -.I- 1) - (o~ - 1)(/:~ - 1)2 ]/(o~--I - 1)2(f l -- I  .- 1)2; 

~ =  A1/A2;  I~ = A2/A3;  ~ > 0 ;  f l > 0 .  

Since A1 < A2 < A3, it is apparent that s < 0, # > 0. 
Thus, the alternating stress waves cq, as, q9 run to the right at section I of the rod. 
Amplitudes of succeeding cyclic stress waves running to the right through the cross-section D - D  of 

the rod can be found in the same manner. If a test bar is placed at a certain distance from the step B - B ,  it 
is loaded with these alternating stress waves and undergoes cyclic elastoplastic deformation (Fig. 2). 

The described technique for achieving alternate loading is the basis of the method we suggest to study 
the dynamic BE. 

A layout similar to Kolskii's dynamic test design involving Hopkinson's split-bar [9] can be produced by 
fixing one end of the piece to be tested in a three-step rod (loading rod) and other in one-step rod (supporting 
rod). 

The stress or(t) and strain ~(t) of the specimen needed to plot a - ~ diagrams are found by the Kolskii 
method [9] as follows: 

t 

o" = Er  r = (2c/I ) / [~I( t )  - ~y(t)] dt, (1.5) 
0 

where A, l are the cross-section area and the length of the working section of a specimen; E and c are the 
elasticity modulus and sound velocity in the rods, respectively; eI(t) is the elastic deformation in the incident 
stress wave initiated in the cross-section D - D ;  ei(t) is the elastic defromation in a stress wave passing toward 
the supporting rod. 

The strain rate ~ = de/dr, is determined in terms of the strain law r = e(t), i.e., from (1.5): 

= (2cll)[6i( t)  - ~,(t)]. 

2. E x p e r i m e n t a l  P r o c e d u r e .  The above theoretical approach was used to develop a test device for 
investigating the dynamic BE in materials. The basic unit of the device is similar to that shown in Fig. 2. A 
three-step loading rod with sections 1-3 of diameters d = 12, 22, and 45 mm, respectively, is made of steel 
30HGSA. Supporting rod 7 (Fig. 2) 12 mm in diameter is also made of steel 30HGSA. Tubular pin 4 (steel 
30HGSA, d = 21 x 16 mm) is of the same length as sections 2 and 3 of the loading rod. In the experiments 
the pin was accelerated using explosive charge energy. Tension resistors 5 and 8 are used to record elastic 
deformation pulses ~1(t) and ~y(t), respectively, in the rods. The two ends of bar 6 of stay type with a working 
section d = 5 x 8 mm in size are threaded to be fixed in the rods. To eliminate gaps between the bar end and 
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TABLE I 

~t, sec-1 

680 
700 
680 
540 
450 
510 
520 
410 

0.95 
0.92 
0.46 
0.96 
1.05 
1.20 
1.40 
0.66 

00d0.1 

54O 
58O 
56O 
525 
53O 
53O 
535 
56O 

l 1 00 01 
MPa 

580 315 
635 310 
585 415 
590 220 
585 270 
60O 200 
605 195 
590 335 

~d 

0.54 
0,49 
0.71 
0,37 
0.46 
0.33 
0.32 
0.57 

thread hollows, contact plates made of alumina alloy AMTs were used. 
The test device was positioned at the center of the tube body and placed on a channel frame with an 

angle piece which supported the free end of step 3 of the loading rod. 
Additionally, the device was equipped with a number of gadgets to prevent the construction and 

measuring lines from the undesirable effects of explosive loading. 
In the experiments the pin was accelerated and struck a small shoulder of the loading rod. Then, a 

tension stress wave el ran to the right of the shoulder, and a compression stress wave a2 to the left (Fig. 2), the 
latter being transformed to a compression stress wave a5 = Xal, which ran to the right of the shoulder. The 
process of dynamic tension-compression of the bar occurred. According to the above theoretical approach, the 
wave 005 is followed by alternating waves 0~ 0013,-.., giving rise to further cycles of tension and compression 
of the bar. 

At a fixed velocity ~ and temperature T, the residual strain r depends only on the duration r of pulses 
o'1,00s,... (Fig. 2). Therefore, the lengths of sections 2 and 3 of the loading rod and the pin should be varied 
in order to find the dependence ~ = ~(r With this aim, the device is equipped with interchangeable rods 
and pins of four standard sizes. 

In order to find 6 = 8(t) at r =cons t  and T = const, the strain velocity ~ during the first tension phase 
is varied by changing the impact velocity ~ through variations of the explosive charge weight. The strain 
velocity during the second compression phase can be controlled by varying the coefficient X [see Eq. (1.4)], 
i.e., by changing the ratios of the cross sections A1, A2, A3 of the loading rod. 

The device is equipped with a small cylindrical electric furnace in order to conduct high-temperature 
studies. The furnace is positioned near the specimen and is used to heat it and the butt-ends of both rods. 
Taking into account that the elastic properties of the rod material change on heating, the method is correctly 
applicable below 300~ In the range 20-300~ the variation in the elasticity of steel 30HGSA is negligible. 

3. Resu l t s  of  F i r s t  E x p e r i m e n t s .  The dynamic BE in steel St. 3 was studied at an ambient 
temperature of 20~ (• ~ The observed strain velocity was 410-700 sec -1 (speed of the pin 20-25 m/sec). 

Figure 3 shows the typical strain pulses r and ey(t) for the first two loading phases in one of the 
experiments. The complete pulses of cyclic loading are sinusoids whose amplitudes are lowered by a factor of 
about 5 for 4- 10 -3 sec. 

Computer-aided processing of the results obtained was carried out using an ad-hoc procedure. 
A diagram of low-cycle tension-compression cr - ~ obtained at an average strain velocity of ~p = 680 sec -1 
and residual deformation ~ = 0.95% is shown in Fig. 4. Note that the fragments of the a - e diagram related 
to the tension phase (above the abscissa) and the compression phase (below the abscissa) resulted from two 
independent runs; they were compiled under the assumption that the dynamic unloading of the specimen is 
linear and the unloading plot (dashed straight line) is parallel to the initial straight line of the stretching load. 

The experimental results are summarized in Table 1, where ~t = (r + ~2t)/2 is the average velocity 
of plastic strain (~lt and ~2t are the strain velocities in the plastic regions of the a - ~ diagram in the phases 
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of tension and compression, respectively; they differ by not more than 15%), st is the residual strain of the 
bar in the tension phase, cr d is the dynamic yield point in the tension phase, a d is the "instantaneous" +0.1 +y  
dynamic yield limit in tension, corresponding to the residual strain st, aa_0.1 is the modulus of "instantaneous" 
dynamic yield limit in the compression phase, corresponding to the residual strain st, and 6a = aa-0.111~ra+y is 
the measure of the dynamic BE. 

Note that no dependence of 6 a on ~t was found within the studied range of strain velocities. The 
results obtained for 6 a were not compared to the data on static loading because of the lack of such data for 
St. 3. The data available for this steel refer mainly to the low-cycle strengths of various structure members 
(e.g., [10]). A somewhat conventional comparison may be made with the BE reported in [11, 12] for various 
steels under static tension-compression at st = 0.2%. The BE in steels 20 and 25 (among the studied steels, 
they are closest to St. 3 in chemical composition) were found to be 39.4 and 29.6%, respectively. It should be 
noted that in [11] the BE measure is referred to as the change in the yield limit a-0.1 under tension following 
precompression to its initial value under the ordinary compression. In [12], it was found as the difference 
between the yield limits observed under tension and subsequent compression by using the equation 

100%. (3.1) 
Using the data obtained for steel St. 3 at et = 0.46% under dynamic loading, the BE was calculated by Eq. 
(3.1) 25.9% (see the Table 1). The dependence 6 a = 6d(st) was plotted (Fig. 5) using the data shown in 
Table 1. The data indicate that the BE in St. 3 is so significant that it should certainly be taken into account 
in the strength calculations. The above dependence generally decreases (the BE increases) as et increases, 
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the BE change intensity being high at r ~ 1.1% and decreasing rapidly at r > 1.2%. Obviously, 6 a has to 
approach a limit value at ct > 1.4%. This conclusion is consistent with the data reported in [1], according to 
which the BE [calculated by Eq. (3.1)] increases with an increase in steel prestrain, reaching a maximum at 
a prestrain of 1.5%. 

To elucidate variations in the dynamic BE in steel St. 3 at r < 0.5% and r > 1.4%, further studies are 
required. Here the behavior of ~d at r > 1.4% is of greater interest from the viewpoint of the determination 
of the limiting value of 6 a and manifestation of the BE under severe strains. Thus, pretension as high as 
7.9% followed by repeated compression of steel 20 was shown [1] to produce a 71% decrease in the limit of 
proportionality. 

Thus, a technique for investigating the dynamic BE in construction materials was developed on the 
basis of the method described in [8]. An explosive charge is used in the test device for low-cycle alternating 
loading during the investigations. The device allows one to conduct dynamic tension and compression of a 
test bar to produce various plastic strains at different strain velocities and temperatures. Initial data on the 
dynamic BE in steel St. 3 were obtained. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 93-01-16504). 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

V. V. Moskvitin, Plasticity under Alternating Loads [in Russian], Izd. Mosk. Univ., Moscow (1965). 
Yu. G. Korotkikh and A. G. Ugodchikov, "The equation of thermoviscoplasticity with combined 
strengthening," in: State Equations in Low-Cycle Loading [in Russian], Nauka, Moscow (1981). 
R. M. Shneiderovich, Strength. under Alternating Loading [in Russian], Mashinostroenie, Moscow 
(1988). 
A. P. Gusenkov and P. I. Kotov, Long and Nonisothermal Low-Cycle Strength of Structure Members 
[in Russian], Mashinostroenie, Moscow (1988). 
H. A. Moreen, "Strain cycling effects in 1100 aluminum," Trans. ASME, Set. D, J. Basic. Eng., No. 1 
(1990). 
R. L. Wool ey, "The Bauschinger effect in some face-centred and body-centred cubic metals," Philos. 
Mag., 44, 353 (1953). 
I. Bauschinger, "Uber die Veranderung der Elastizitatsgrenze und des Elastizitats Moduls 
verschiedener Metall," Civil Ingenieur, N. F. (1881). 
K. Ogawa, "Impact-tension compression test by using a split-Hopkinson bar," Ezper. Mech., 24, No. 2 
(1984). 
V. P. Muzychenko, S. I. Kashenko, and V. A. Gus'kov, "Application of the method of a split-Hopkinson 
bar to the investigation of dynamic properties of materials," Zavod. Lab., No. 1 (1986). 
A. P. Gusenkov and G. V. Moskvitin, Low-Cycle Strength of Shell Structures [in Russian], Nauka, 
Moscow (1989). 
S. I. Ratner and Yu. S. Danilov, "Variations of proportionality and yield limit sunder repeated 
loading," Zavod. Lab., No. 4 (1950). 
K. Ya. Shults, "Some information on X-ray studies of the Baushinger effect," Tr. Tallinn. Politekh. 
Inst., No. 172 (1960). 

627 


